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Abstract

A classical transport experiment was performed in a field plot of 2.5 m2 using the dye
tracer brilliant blue. The measured tracer distribution demonstrates the dominant role
of the heterogeneous soil structure for solute transport. As with many other published
experiments, this evidences the need of considering the macroscopic structure of soil5

to predict flow and transport.
We combine three different approaches to represent the relevant structure of the

specific situation of our experiment: i) direct measurement, ii) statistical description of
heterogeneities and iii) a conceptual model of structure formation. The structure of
soil layers was directly obtained from serial sections in the field. The sub-scale het-10

erogeneity within the soil horizons was modelled through correlated random fields with
estimated correlation lengths and anisotropy. Earthworm burrows played a dominant
role at the transition between the upper soil horizon and the subsoil. A model based
on percolation theory is introduced that mimics the geometry of earthworm burrow
systems.15

The hydraulic material properties of the different structural units were obtained by
direct measurements where available and by a best estimate otherwise. From the hy-
draulic structure, the 3-dimensional velocity field of water was calculated by solving
Richards’ Equation and solute transport was simulated. The simulated tracer distribu-
tion compares reasonably well with the experimental data. We conclude that a rough20

representation of the structure and a rough representation of the hydraulic properties
might be sufficient to predict flow and transport, but both elements are definitely re-
quired.

1. Introduction

Solute transport is important to plant uptake, chemical reactions and transformation25

processes, and is a key factor in controlling groundwater contamination.
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Despite its fundamental importance, solute transport in soil is still far from being
quantitatively understood. This means we are typically not in the position to predict
solute transport with respect to the first arrival time in a given depth or even with respect
to the mean velocity.

The major hurdle is the heterogeneity of soils at various spatial scales with the con-5

sequence that material properties and model parameters are not well defined. In other
words, for a given soil sample, averaged effective properties only exist if the scale of
heterogenities is much smaller than the size of the sample, which is the prerequisite for
the existance of a representative elementary volume (REV). In the following, we want
to use the term ”structure” for that type of heterogeneity which is of similar size as the10

scale of interest (i.e. size of sample) and hence, can not be represented by effective
properties.

A well known phenomenon, which can be considered as a consequence of hetero-
geneous material properties, is “preferential flow”, in which some fraction of a solute
moves much faster than expected, through a small fraction of the medium. In this15

case, wrong expectations typically originate from the measurement of ’effective’ mate-
rial properties assuming homogeneity in the sense of a REV while the preferential flow
paths are not captured by the measurement. This phenomenon of preferential flow was
first attributed to continuous macropores (Bouma, 1981; Beven and Germann, 1982,
e.g.) and has been evidenced for years in both laboratory and field experiments. The20

use of dye tracers by Flury et al. (1994) allowed a detailed study of the phenomenology
of solute transport thereby revealing that preferential flow as a consequence of various
soil structural features was the rule rather than the exception. It is not only produced
by macropores but also, more generally, by the heterogeneous structure of hydraulic
properties.25

The common ad-hoc approach for modelling preferential flow is to separate differ-
ent zones of different mobility with the idea that solutes are translocated only in a
restricted part of the porous network (van Genuchten and Wierenga, 1976; Gerke and
van Genuchten, 1993; Jarvis, 1994). This approach adds considerable flexibility to the
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classical convection-dispersion model, so that experimental findings can be described
quite accurately. However these models are only effective descriptions of the natural
complexity, and the additional parameters – the volume fraction of zones with differ-
ent mobility and the rate parameter controlling the exchange between these zones –
cannot be measured independently. Therefore, only a retrospective description of a5

specific experiment is feasible through the fitting of the model parameters to measured
breakthrough curves or spatial distributions of concentration data. Moreover, the ob-
tained parameters are expected to change with the initial and boundary conditions due
to the changing geometry of the flow field (Clothier et al., 1995) and with the transport
distance due to the heterogeneity of the material (Vanderborght et al., 2001). Hence,10

these models typically cannot be used to predict flow and transport for conditions other
than those used for calibration.

In the context of flow and transport, relevant structures are ubiquitous at a wide
range of spatial scales, which has been formalised for soils using the concept of fractal
geometry (Baveye and Boast, 1998) or the approach of discrete or continuous hierar-15

chy (Cushman, 1990). Vogel and Roth (2003) proposed the “scaleway” as a discrete
hierarchical approach for modelling flow and transport, which is based on the explicit
consideration of the macro structure while microscopic heterogeneities are averaged
and replaced by effective descriptions. The major drawback of this approach is the fact
that a full three-dimensional representation of the relevant structure is required. Given20

the heterogeneity of natural soil, there seems to be no loophole out of this dilemma, if
we would like to come up with a reliable prediction.

In this paper we intend to present three different approaches to incorporating the
relevant 3D-structure of a given soil for modelling flow and transport, and we discuss
meanings of the term “relevant” in this context.25

The first approach, which will be referred to as the “explicit” approach, is based on
the direct measurement of the structure using appropriate instruments. This can be
done using destructive methods as e.g. serial sectioning. Today, however, there are
powerful instruments available for the non-invasive measurement of structure using
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the concept of tomography. At the small scale X-ray tomography is used to identify
the structure of macropores and zones of contrasting bulk densities (Hopmans et al.,
1994; Wildenschild et al., 2002). On larger scales geophysical tools might be applied,
such as geoelectric (Puvance and Andricevic, 2000, e.g.) or georadar (Kowalsky et al.,
2004, e.g.) techniques.5

The second approach is a “statistical” approach. It is based on limited information on
relevant structural properties such as the variance and the correlation scale of material
properties. Given this information, a continuous representation of the structure can be
represented by equivalent random fields. This approach is typically used in the field of
stochastic continuum theory (Dagan, 1986; Gelhar, 1986).10

The third approach is termed the “genetic” approach. It uses the available knowledge
on the processes of structure formation to generate the structure itself. This approach
is especially attractive for structural units which are highly relevant but sparse and/or
highly anisotropic, so that the first approach is not adequate and the second is insuffi-
cient in terms of spatial resolution. Examples are fissures or earthworm burrows.15

We apply these different strategies to predict the 3D spatial distribution of a dye
tracer, which was measured in a field experiment at steady state flow conditions. The
structure of the soil horizons is directly measured by photography (explicit approach),
the sub-scale heterogeneity is modelled through estimated correlation lengths within
the soil horizons (statistical approach), and the macroporous structure of earthworm20

burrows connecting the topsoil and the subsoil is modelled based on a few typical
properties of the burrow system of anecic earthworms (genetic approach). Ideally, the
hydraulic properties for each structural unit are measured directly. Where this was not
possible we applied a best estimate. Then, based on the continuous 3-dimensional
representation of the structure of the experimental domain and the hydraulic properties25

of the individual structural units, we simulated steady state water flow using Richards’
equation. Subsequently, the resulting velocity field was used to simulate solute trans-
port assuming convection-dispersion type of transport at the small scale. Finally, the
simulated dye-tracer distribution is directly compared to experimental data. The sim-
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ulation is considered to be a prediction of solute transport, in the sense that no result
of the transport experiment is used for model calibration. It is based on a rather rough
description of the spatial heterogeneity and a rather rough approximation of the hy-
draulic properties. One aim of this study was to evaluate how far we can get in face
of such rough approximations – a typical situation in field experiments – by combining5

structural information with material properties.

2. Experiment

The experiment was conducted in the Beauce region, in France on a 80 cm deep
loamy-clay soil classified as a haplic Calcisol (FAO-UNESCO, 1975). It is organised in
3 horizons (Ould Mohammed and Bruand, 1994): from 0 to 35 cm, a formerly ploughed10

horizon, A, with a plough-pan at 35 cm depth; from 35 to 60 cm, a structured B horizon,
with less organic matter; and from 60 to 80 cm, a cryoturbated calcareous C horizon
including calcareous stones. At the date of the experiment, in April 2000, the soil was
covered with rape. During the 5 years prior to our experiment the soil was treated with
minimum tillage restricted to the upper 10 centimetres using a gruber. Before, the soil15

was periodically ploughed to a depth of 35 cm. Due to the change in tillage practice,
the upper A horizon was partitioned into two parts: a loose, crumbly structured surface
layer, A1, down to 10 cm, and a lower part, A2, from 10 to 35 cm where the soil was
markedly more compact with a polyhedric structure and vertical earthworm burrows.

The infiltration experiment was performed on a plot of 1.6×1.6 m. Water and dye20

tracer were supplied using an automated sprinkler device with 5 nozzles spaced 33 cm
apart (Kasteel et al., 2002). The distance between the sprinkler and the soil surface
was adjusted to 36 cm to ensure a uniform irrigation of the soil surface. The experiment
was performed inside a tent to avoid any disturbance by wind and natural rainfall. The
kinetic energy of the small water droplets produced by the nozzles was small enough25

to avoid modifications of the soil surface. The applied steady state infiltration rate was
adjusted to 13 mm h−1 to avoid the formation of puddles at the soil surface. To stain the
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flow paths, we used the food dye brilliant blue FCF which is frequently used because
of the supposedly low interaction of the anionic molecule with the soil matrix (Flury
and Flühler, 1995). However, it was found that the retardation of brilliant blue might
be significant depending on the ionic strength and the soil type (Ketelsen and Meyer-
Windel, 1999; Germàn-Heins and Flury, 2000; Kasteel et al., 2002). Consequently5

we interpret the stained part of the soil as minimum travel distance. The experiment
consisted of 3 consecutive periods while the flow rate was kept constant:

1. The soil profile was irrigated for 16 h by 210 mm of tracer-free water. After this
period we assumed steady state flow in the upper part of the soil profile.

2. During the second period, 19 mm of the dye tracer (6 g/l brilliant blue) was applied10

as an extended pulse.

3. Finally, 55 mm of tracer-free water were applied to translocate the dye pulse.

After the infiltration experiment, a vertical soil pit (140 cm width, 90 cm depth) was
excavated within the irrigated area. This vertical section was photographed together
with a grey frame containing a metric colour scale (Fig. 1). Then, to produce serial15

sections, a slice of 4 cm was removed from the pit using a knife and another image
was taken. This procedure was repeated 23 times to produce a set of 24 digital serial
sections with a separation of 4 cm. The individual images cover an area of about
100 cm width and 70 cm height at a resolution of 960×745 pixel with a pixel size of
1 mm2.20

At a close distance from the experiment, undisturbed soil cores (16.2 cm diameter,
10 cm height) were taken from the A1 and B horizon. These samples were used for
classical multistep-outflow experiments (Hopmans et al., 2002) to determine the hy-
draulic properties of the different horizons. The sample taken from the compacted A2
horizon had to be rejected because of a significant disturbance of the structure.25
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3. Image analysis

Extraction of structural units
First the serial images were corrected for distortion using the spatial coordinates of
the edges which are clearly identified by the fixed frame. Then, the main horizons
(A1, A2, B) could be identified based on different colours. After combining the se-5

rial sections we got the 3-dimensional structure of the soil horizons at a resolution of
1 mm×40 mm ×1 mm in the x, y, and z direction respectively (Fig. 1). Earthworm bur-
rows were clearly detected as an additional structural unit especially in the compacted
horizon A2. Evidently, the resolution of the serial sections was far too low to measure
the 3-dimensional geometry of such burrows explicitly.10

Distribution of dye tracer
The 3-dimensional distribution of the dye tracer was obtained at the same resolution as
the soil horizons. The images were recorded in RGB format with brightness values in
the range 0–255, and we used the red (r) and the green (g) channel to discriminate blue
stained areas without distinguishing different concentrations. A voxel was considered15

to be stained if
r
g

< 1.45 and r + g < [r̄ + 60] , (1)

where r̄ is the mean red value of the image. This rule was applied to each image indi-
vidually. Because the r/g ratio is insensitive to brightness, and the threshold value is
adjusted for mean image brightness, differences in illumination between images during20

the excavation and photography period are accounted for. No further image correction
was considered necessary.

4. Modelling soil structure

Soil horizons – explicit description
2160
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A description of the soil horizons was obtained from the serial sections described
above, meaning the boundaries between the different horizons which were found to
be not exactly horizontal, are directly measured by the serial sections. Together with
the experimental determination of the hydraulic properties, a complete 3-dimensional
description of the hydraulic conditions should be possible. Such an approach would5

have to rely on the assumption of macroscopic homogeneity of the different horizons,
specifically, that the soil cores used to measure the hydraulic properties include a rep-
resentative elementary volume (REV). In our experiment, this requirement was defi-
nitely violated by the macro-pores within the A2 horizon formed by earthworms. More-
over, the A1 and the B horizon exhibited some mesoscopic heterogeneities which were10

smaller but close to the size of the cores. In the A1 horizon there were aggregates
and clods resulting from tillage; the B horizon had regions of variable bulk density
due to variable biological activity (roots, earthworms). Because the characteristic size
of these structural features was not much smaller than the thickness of the soil hori-
zons, the assumption of macroscopic homogeneity was critical also in the A1 and B15

horizon. For a quantitative understanding of flow and transport, all these mesoscopic
heterogeneities might be significant. On the other hand, no direct measurement of the
mesoscopic structure is available, which could be used in a numerical model to predict
flow and transport. In the following we use a classical statistical approach to represent
mesoscopic heterogeneities in the A1 and the B horizon, and a new genetic approach20

to represent the macroporous structure within the A2 horizon.

Mesoscopic heterogeneity – statistical approach
In the A1 and the B horizons a mesoscale heterogeneity was introduced by varying the
measured hydraulic properties h∗(θ) and K ∗(θ) where h is the soil water potential, θ the
volumetric water content, and K the hydraulic conductivity. We used a scaling factor c25

according to (Roth, 1995),

c =
h∗(θ)

h(θ)
, (2)
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so that the actual water characteristic at a given location, h(θ), is related to the mea-
sured reference properties through c. For the hydraulic conductivity we use

c2 =
K (θ)

K ∗(θ)
. (3)

This approach implies similarity of the region with different hydraulic properties accord-
ing to Miller and Miller (1956). The scaling factor c reflects a characteristic length at5

the pore scale such as grain size or pore radius, which is typically assumed to be log-
normally distributed. We considered log(c) to be normally distributed with expectation
0 and variance σ2

c=0.25. We use the same scaling factor to describe both, h(θ) and
K (θ), while h(θ) is linearly related to the characteristic length according to Eq. (2) and
K (θ) is proportional to c2 according to Eq. (3). The spatial correlation of c is described10

by a Gaussian random field with predefined covariance function and related correla-
tion lengths λx,y,z for the three spatial directions. The random fields were generated
according to Robin et al. (1993).

In the A1 horizon we chose the mesoscopic heterogeneity to be slightly anisotropic
with a preferred horizontal orientation, i.e. λx,y=45 mm and λz=30 mm. This choice15

was based on field observation for the orientation of soil clods formed by tillage. In
the B horizon, a preferred vertical orientation was assumed with a correlation length of
λx,y=60 mm in the horizontal and λz=120 mm in the vertical direction, which was also
based on field observations.

Macroporous structure – genetic approach20

The phenomenology of flow and transport through the compacted soil layer A2 is dom-
inated by the macroporous structure due to earthworm activity and roots. Direct mea-
surements of the detailed geometry of this structural unit was not possible since the
resolution of the field images is much too low, because the distance between the se-
rial sections is too large. However, the macroporous structure cannot be ignored for a25

quantitative and even qualitative understanding of flow and transport in our experiment.
The huge difference between the characteristic size of a structural element λ, in this
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case the diameter of the macropores, and the functional correlation length of the struc-
tural unit Λ, here the continuous lengths of the macropores, is a general difficulty. This
is true for the measurement as well as for the spatial discretisation of structural com-
ponents for modelling purposes. In both cases the resolution, i.e. the pixel size, needs
to be smaller than λ while the region of measurement should be larger than Λ. The5

technical difficulties to achieve this requirement increase with increasing anisotropy of
the structure.

An alternative to the direct measurement of the geometry of earthworm burrow sys-
tems, is to model this geometry using the available knowledge on the way these bur-
row systems are created. Such an approach was recently proposed by Bastardie et al.10

(2002) who simulated the burrowing activity of different earthworm species based on
the statistics of characteristic types of earthworm movements defined by (Capowiez,
2000). They used this “animal-based” model to investigate the effect of various struc-
tural aspects, such as volume, topology and orientation, on the hydraulic properties of
earthworm channel systems.15

Naturally, this approach cannot reproduce any details related to the multitude of dif-
ferent species having specific habits, which additionally might be modified by the type
of substrate they are living in. Also the diameter of earthworm burrows varies consid-
erably. For our experiment, however, the exact diameter is less important with respect
to the overall pattern of solute transport because, in any case, the saturated hydraulic20

conductivity of the macropores is very much higher than that of the surrounding soil
matrix. For our application we only used some general information on the basic geom-
etry of earthworm channels available from the literature. Field measurements of borrow
systems created by the large anecic species Lumbricus terrestris, Aporrectodea spec.
and Allolobophora spec. indicated a vertical main channel with an increased tendency25

for branching towards the top soil which leads to a funnel like structure (Lighthart et al.,
1993; Jegou et al., 1999). As direct information from our field experiment, we esti-
mated the number density of continuous earthworm burrows in the horizontal plane to
be 9 m−2 within the compacted A2 horizon. This was done through visual inspection
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during the excavation of the soil.
To model a single macropore we used the concepts of percolation theory (Stauffer,

1985). We started from an uncorrelated field of random numbers equally distributed
in (0,255) on a cubic voxel grid. The horizontal dimensions (256 voxel) of this field
corresponds to the area attributed to one macropore (1/9 of the total area) and the5

vertical dimension corresponds to the depth of the compacted horizon A2. Then, the
random grey field was binarized just above the percolation threshold so that a perco-
lation cluster with at least one continuous path in the vertical direction is produced and
we deleted all voxels that did not belong to this continuous path to isolate the backbone
of the percolation cluster. Then the most efficient path was determined through numer-10

ical simulation of transport through the backbone using a particle tracking algorithm:
After reducing the backbone to its skeleton (i.e. a path of 1 voxel thickness) a number
of particles were introduced at a randomly chosen top end of the backbone. Then,
for each particle a random walk through the backbone was calculated to obtain the
shortest path and “critical neck” of the backbone. The latter is defined as the location15

within the backbone where most of the particles have passed. Below this point only the
shortest path was considered while above that point all paths inside the backbone were
conserved. Hence, a funnel like macropore was generated reflecting some geometric
properties of natural earthworm burrows. Finally the skeleton of the simulated macro-
pore was dilated by a spherical structuring element to adjust the width of the channels20

to a constant value of 7.5 mm.
This approach for modelling the macroporous structure of the compacted soil layer

also reflects the tendency of roots to pass through such layers along earthworm chan-
nels (Sveistrup et al., 1997). Once a root has “found” an earthworm channel it follows
that channel to reach the more favourable layers below the compacted zone. Figure 225

shows different realizations of generated macropores.
Figure 3 shows the entire 3-D representation of the modelled domain including iso-

surfaces of the scaling factors describing the mesoscopic heterogeneity in the A1 and
B horizon and the earthworm burrows in the A2 horizon.
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5. Numerical simulation of flow and transport

Water flow

Based on the complete three-dimensional representation of the structure within the
experimental domain (Fig. 3), we calculated the heterogeneous velocity field during
the infiltration experiment using Richards’ equation:5

∂
∂t

θ − ∇ · [K (θ) [∇h − ρwg]] = 0 (4)

where ρw is the density of water and g acceleration due to gravity. To solve this equa-
tion the hydraulic properties h(θ) and K (θ) are required for each location. This can be
obtained, given the measured structure of the different horizons and assuming macro-
scopic homogeneity for each horizon with or without mesoscopic heterogeneity. How-10

ever, it is not obvious how to handle the macroporous structure of the A2 horizon.
Clearly, Richards’ equation does not apply to the flow of free water in macropores.
Actually, the problem of coupling flow in macropores with flow in the soil matrix within
a single model framework is still not solved. As an approximation, we considered the
macropores to be a very coarse porous medium having a low air entry value and a high15

conductivity.
The hydraulic properties for each structural unit – soil horizons and macropores –

are described using a modified van Genuchten model according to Vogel et al. (2001).
This model introduces an explicit air entry pressure he>0 to the classical model of van
Genuchten (1980) and is given by20

Se =

{
1
S∗
e

[
1 + [αh]n

]−m
: h > he

1 : h ≤ he
, (5)

with the effective water saturation

Se =
θ − θr

θs − θr
. (6)
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θs and θr are the saturated and the residual water content respectively, n and α are
the empirical van Genuchten parameters, and m=1−1/n. S∗

e=[1+[αhe]n]−m denotes
the saturation at the air entry point using the classical van Genuchten model.

This formulation was introduced to avoid an unrealistically steep decline of the hy-
draulic conductivity close to water saturation when using the Mualem-model to derive5

the hydraulic conductivity function (Mualem, 1976). It can be shown, that such an unre-
alistic shape of the conductivity function has to be expected for n<2 and that it hampers
the numerical solution of Richards’ equation considerably. For a detailed discussion we
refer to Ippisch et al. (2005).

The relative hydraulic conductivity is then given by10

Kr =

Sτ
e

[
1−(1−(SeS

∗
e)1/m)m

1−(1−(S∗
e)1/m)m

]2

: Se < S∗
e

1 : Se ≥ S∗
e

, (7)

and the hydraulic conductivity function as

K (Se) = KsKr (Se) , (8)

where Ks is the saturated hydraulic conductivity and τ is an empirical parameter for
tortuosity.15

The hydraulic parameters were measured for the A1 and the B horizons. In contrast,
no measurements were available for the compacted A2 horizon. The texture of this
horizon was comparable to the horizons above and below. To account for the increased
compactness of this layer we assumed a lower hydraulic conductivity and a larger air
entry value. The hydraulic parameters for all structural units are given in Table 1.20

The numerical simulations were conducted with the model µϕ using a cell-centred
finite-volume scheme with full-upwinding in space and an implicit Euler scheme in time.
Linearisation of the nonlinear equations is done by an incomplete Newton-Method with
line search. The linear equations are solved with an algebraic multi-grid solver. For the
time solver the time step is adapted automatically. A constant flux was imposed at the25
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upper boundary of the domain and no-flux boundary conditions where used at the side
boundaries. As there was no influence of a ground water table at this site, gravity flow
was assumed at the lower boundary. After reaching a quasi-steady-state the flux field
was interpolated using RT0 Raviart Thomas elements (Raviart and Thomas, 1975;
Brezzi and Fortin, 1991).5

Once the steady state velocity field was calculated, we simulated the infiltration of the
dye tracer assuming a local convection-dispersion model. As the spatial heterogene-
ity of the soil was already considered explicitly in the calculation of the flux field, the

dispersion coefficient D0 was calculated as D0=[θ7/3/φ2]Dm using the second model
of Millington and Quirk (1960) to account for the changes in water content, where Dm10

is the molecular diffusion coefficient. The potential nonlinear sorption of brilliant blue
was represented by a Langmuir isotherm C∞

s
kθCw

1+kθCw
. As the coefficients k and C∞

s

are unknown for this soil we used the values obtained by Kasteel et al. (2002) as an
orientation, which was 0.006 m3/g and 1.2 g/l, respectively. The solute transport was
discretized using a second-order Godonov method (LeVeque, 2002) with a minmod15

slope limiter for the convective part and a finite-volume scheme for the diffusive term.
The quasi-steady-state flux field was computed with a resolution of 128×128×128

on a Pentium-4 Linux workstation, the solute transport was solved with a resolution of
256×256×256 in parallel on the Linux cluster Helix (with 128 dual processor nodes).
To speed up the calculation of the flux field we first calculated the quasi-steady state20

flux field with a resolution of 64×64×64 starting with an initial condition of gravity flow
and used the result as initial condition of the 128×128×128 flux field.

The simulated time was the same as the duration of the experiment until the infil-
tration was stopped and the excavation started. We did not consider the subsequent
period required to prepare all 24 serial sections. There was no marked difference in25

depth distribution of the tracer between the first and the last serial section, so that a
direct comparison of the simulated tracer distribution and the experimental data should
be possible.

To evidence the effect of the mesoscopic heterogeneity, the sorption of the solute
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and the boundary conditions we simulated four different scenarios:

– SCreference a reference scenario including mesoscopic heterogeneity and sorp-
tion of the solute,

– SCno−sorp the same as SCreference but without sorption,

– SChomogeneous the same as SCreference but without mesoscopic heterogeneity,5

– SClow−flow the same as SCreference but with a flow rate of 0.13 cm/h which is one
order of magnitude lower than the rate in our experiment.

6. Results and Discussion

The measured 3D distribution of dye after the experiment in comparison to the sim-
ulation (SCreference scenario) is illustrated in Fig. 4. For the simulation an iso-surface10

with a concentration of 0.1 g/l is plotted. This threshold was chosen according to the
analysis of Forrer et al. (2000) who found a clear visibility of brilliant blue above this
value. This choice is expected to depend on the type of soil; however, the measured
dye distribution patterns do not change significantly if we threshold at a slightly different
value. The resolution of the experimental data is limited in one horizontal direction due15

to the separation of the serial sections of 4 cm.
The simulated distribution of brilliant blue is much smoother than the measurements.

However, it qualitatively reflects one striking characteristics of the measured data, i.e.
the reduced dye coverage within the compacted part of the soil profile which increases
again in the lower B horizon. This pattern is an obvious consequence of the hydraulic20

structure of the soil (Table 1) especially of the fact that the saturated conductivity of
the compacted A2 horizon is lower than the infiltration rate. Consequently, most of
the water is directed towards the macropores to bypass the compacted layer. For this
configuration the absolute value of the saturated conductivity and the other hydraulic
parameters of the A2 horizons are of minor importance because the soil matrix is close25
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to saturation. So the uncertainty of these parameters as a consequence of the estima-
tion procedure is less critical for our experiment. On the other hand the ratio between
Ks and the flow rate triggers the incidence of preferential flow along the worm holes as
dicussed further below.

For a more quantitative comparison of the different scenarios and the experiment5

with respect to the vertical distribution, the brilliant blue coverage was averaged over
the horizontal cross section of the experimental domain. The resulting depth distribu-
tions are shown in Fig. 5 together with two-dimensional vertical sections showing the
coverage of brilliant blue for the different scenarios.

The predicted depth distribution overestimates the amount of solute in the lower B10

horizon and conversely, the dye concentration in the compacted A2 horizon is underes-
timated. Obviously, more dye moved from the worm holes into the surrounding matrix.
This is clearly due to the over simplification of the compacted horizon which is parti-
tioned into a dense matrix and open macropores. Although, this roughly reflects the
most relevant hydraulic structure of the material, the partitioning is more fuzzy in reality.15

The overall pattern of transport is probably not sensitive to the detailed morphology
of the macropores which were modelled to mimic the shape of earthworm burrows. A
number of straight channels would have produced a similar pattern of solute transport
in our experiment. But the more detailed morphology of macropores may be relevant for
other processes where the interaction with the solid phase is stronger and hence, the20

surface density of macropores is more important. We think that the genetic approach
used to represent the macropores is especially attractive in case the structure itself
is difficult to measure directly. The example of earthworm burrows presented here is
thought as a demonstration of this concept.

The effect of the mesoscopic heterogeneity is actually not visible in the overall25

phenomenology of solute transport, since the difference between SChomogeneous and
SCreference is negligible. In contrast, as expected, the depth distribution is significantly
affected by the non-linear sorption of brilliant blue. For SCno−sorp the vertical transloca-
tion of brilliant blue is markedly increased while the overall pattern of solute distribution
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is not changed.
The scenario with the low flow rate shows a completely different behaviour. During

SClow−flow the saturated conductivity of the compacted A2 horizon is well above the
simulated flow rate and consequently, the water potential remains well below water
saturation. Under such conditions the conductivity of the macropores vanishes and the5

flow regime turns into a homogeneous matrix flow. The SClow−flow scenario has the
same cumulative infiltration as the other scenarios; however, the mean vertical translo-
cation of brilliant blue is much smaller compared to the scenarios with higher flow rate.
This difference is due to the non-linear sorption characteristics of the dye. Although
a corresponding experiment is missing, SClow−flow highlights the predictive potential of10

the approach to model solute transport based on the structure of hydraulic properties.
Using this approach, predictions for arbitrary initial and boundary conditions are pos-
sible. This is an advantage compared to the common approach of fitting an effective
transport model to measured tracer distributions. Actually, there might exist some so-
phisticated, multi-domain model that is in the position to reproduce the measured depth15

distribution accurately. However, the interpretation of the resulting model parameters is
in principle restricted to the specific initial and boundary conditions of the experiment.
The difference between SCreference and SClow−flow is just one striking example of how
transport parameters might change with changing boundary conditions.

7. Conclusions20

In this study we aimed at predicting the vertical translocation of a dye tracer in a het-
erogeneous field soil. The prediction was based on the representation of the complete
three-dimensional structure of the hydraulic properties and the resulting velocity field
which was calculated using Richards’ equation. To represent the structure we used the
direct measurement of soil horizons, a statistical approach to estimate the sub-scale25

fluctuations of hydraulic properties and a genetic approach to model the formation of
macroporous originating from earthworm activity.
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The agreement between our experimental findings and the prediction of tracer distri-
bution is far from beeing perfect. However, the overall pattern including the infiltration
depth is reasonably matched. Given the fact, that the prediction is based on a only
rough approximation of the structure and the related material properties we come to
the following hypothesis which potentially could be corroborated by future experiments:5

– Based on the structure of hydraulic properties, the approximate pattern of solute
transport including the phenomenon of preferential flow can be predicted. The
macroscopic dispersion is an immediate consequence of the macroscopic struc-
ture of the material. Given this structure, no “effective” dispersion coefficient is
required.10

– Given the relevant and continuous structure of the material, the hydraulic proper-
ties of the single structural units may either be measured directly (here: measure-
ments of h(θ) and K (θ) for the different horizons), or they may be derived from
proxy variables (here: estimated correlation length of bulk density within the hori-
zons), or even derived from a plausible guess (here: h(θ) and K (θ) for earthworm15

burrows).

– To predict transport in heterogeneous soil, quantitative information on structure
including the three-dimensional topology and on the related hydraulic properties
is indispensable. If both components are available a rough approximation might
be sufficient (see also Vogel and Roth, 2003). If one component is missing, the20

estimation of transport parameters is futile.

– To represent the structure of a model domain, different approaches such as direct
measurements, statistical modelling, and modelling of structure formation can be
combined. The latter is especially attractive for structural components that are
hardly accessible by any measurement technique.25
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Table 1. Hydraulic parameters for the different structural units. For the A1 and the B horizons
they were directly measured, for the A2 and the macropores we used a plausible guess.

α n θs θr Ks τ he

(cm−1) (−) (cm3/cm3) (cm3/cm3) (cm/h) (−) (cm)

A1 horizon 33.0 1.24 0.34 0.1 18.0 0.5 10.2
A2 horizon 0.15 1.33 0.36 0.1 0.29 0.5 44.7
macropores 0.2 8.0 0.5 0.0 3600 0.5 0.58
B horizon 0.15 1.33 0.36 0.1 2.88 0.5 10.3
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Fig. 1. Setup of the experiment: After the application of the dye tracer, the experimental domain
(1.0×1.0×0.7 m3) was explored by 24 serial sections. Notice the irregular distribution of the dye.
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Fig. 2. Three realizations of earthworm burrows using a genetic model.
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Fig. 3. Structure of the entire experimental domain (Fig. 1): Iso-surfaces of the mean log-
scaling factors in the A1 and B horizon, together with the modelled structure of macropores in
the A2 horizon.
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Fig. 4. Distribution of Brilliant Blue measured after the experiment (left) and simulated based
on the heterogeneous structure of hydraulic properties (right) for the same initial and boundary
conditions. The images cover the entire experimental domain shown in Fig. 1.

2180

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/2153/hessd-2-2153_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/2153/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 2153–2181, 2005

Structure and
transport

H.-J. Vogel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

SCreference

SChomogeneous SCno−sorp

SClow−flow

dye coverage

d
ep

th
[c

m
]

Fig. 5. Averaged vertical distribution of Brilliant Blue coverage measured after the experiment
(symbols), simulated based on the heterogeneous structure of hydraulic properties including
sorption (SCreference thick line), without mesoscopic heterogeneities (SChomogeneous thick dashed
line), without sorption (SCno−sorp dashed line) and with the low flow rate but same amount of
infiltrated water (SClow−flow grey). Notice that dye coverage is not necessarily related to total
mass of dye. Right: vertical sections through the centre of the simulated domain are shown
including the boundaries between the different materials (horizons and earthworm burrows). To
compare with a measured section see Fig. 1.
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